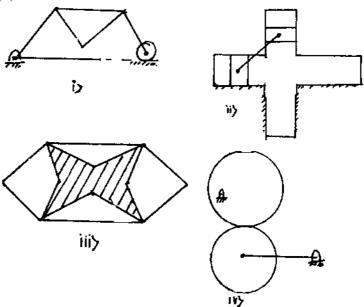
2. Any revealing of identification, appeal to evaluator and for equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fourth Semester B.E. Degree Examination, Dec.2013/Jan.2014 Kinematics of Machines

Time: 3 hrs.


Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.

2. Graphical solution may be obtained either on graph or on answer sheet.

PART - A

1 a. Define degrees of freedom. Find the degrees of freedom for the following mechanism as shown in Fig.Q1 (a) (10 Marks)

- b. Define the following terms with examples:
 - i) Kinematic pair
- ii) Mechanism
- iii) Structure
- iv) Inversion (10 Marks)

2 a. Describe with neat sketch two inversion of double slider-crank chain mechanism. (10 Marks)

- b. Derive an expression for necessary condition of correct steering and explain Ackermann steering gear with neat sketch. (10 Marks)
- A four bar mechanism shown in Fig. Q3 crank BC rotates with an angular velocity of 100 rad/sec and an angular acceleration of 4400 rad/sec² at the instant when the crank makes an angle 53° to the horizontal. Draw the acceleration polygon and determine the linear acceleration of points E and the angular acceleration of link 3. (20 Marks)

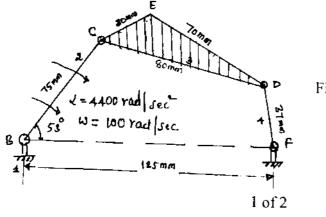
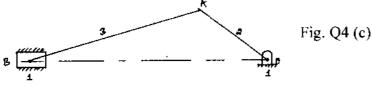
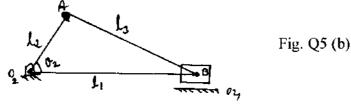


Fig. Q3


4 a. Write a note on Kennedy's theorem.

(05 Marks)

b. List the properties of instantaneous centre of rotation.


(05 Marks)

c. In a slider crank mechanism shown in Fig. Q4 (c) the crank OA = 300 mm and connecting rod AB = 1200 mm the crank OA is turned 30° from inner dead centre. Locate all the instantaneous centres. If the crank rotates at 15 rad/sec clockwise, find i) velocity of slider B and ii) Angular velocity of connecting rod AB. (10 Marks)

PART - B

- 5 a. Derive an expression for displacement analysis of a 4 bar mechanism using complex algebra method. (10 Marks)
 - b. For a single slider mechanism, of Fig. Q5 (b) determine the velocity and acceleration of piston, angular acceleration of connecting rod. Take crank length = 50 mm, connecting rod = 200 mm, Crank speed = 300 rpm (constant), Crank angle 30°. (10 Marks)

- 6 a. Derive an equation to determine length of arc of contact for mating of 2 spur gear. (08 Marks)
 - b. Two gear wheel mesh externally and are to give a velocity ratio of 3. The teeth are of involute form of module 6 mm and standard addendum one module. Pressure angle = 18°. Pinion rotates at 90 rpm. Find
 - i) Number of teeth on each wheel so that interference is just avoided.
 - ii) Length of path of contact.
 - iii) Maximum velocity of sliding between teeth.
 - iv) Number of pairs of teeth in contact.

(12 Marks)

7 a. Explain with neat sketch classification of gear trains.

(06 Marks)

- b. In an epicyclic gear train, the internal wheels A, B and the compound wheel C and D rotate independently about the axis 'O'. The wheel E and F rotate on a pin fixed to the arm G. E gear with A and C, and F gears with B and D. All the wheels have same pitch and the number of teeth on E and F are 18, C and D are 28, 26 respectively.
 - i) Sketch the arrangement.
 - ii) Number of teeth on A and B.
 - iii) If arm (G) makes 200 rpm clockwise and gear A is fixed, find speed of gear B
 - iv) If arm (G) makes 100 rpm clockwise and gear A make 50 rpm CCW, find the speed of gear B.

 (14 Marks)
- A cam rotating at uniform speed of 300 rpm operates a reciprocating follower through a roller 1.5 cm diameter. The follower motion is defined as below:
 - i) Outward during 150° with UARM.
 - ii) Dwell for next 30°
 - iii) Return during next 120° with SHM.
 - iv) Remaining dwell period.

Stroke of the follower is 3 cm. Minimum radius of cam is 3 cm. Draw the cam profile when the follower axis is offset to the left by 1 cm and determine maximum velocity and maximum acceleration during outstroke.

(20 Marks)

* * * * *